First Highly Asymmetric Pummerer-type Reaction in Chiral, Non-racemic Acyclic Sulfoxides Induced by O-Silylated Ketene Acetal

Yasuyuki Kita,* Norio Shibata, Naoki Yoshida and Shigekazu Fujita
Faculty of Pharmaceutical Sciences, Osaka University, 1-6, Yamada-oka, Suita, Osaka 565, Japan

Various types of syn- and anti- β-substituted sulfoxides $\mathbf{6 b}$ - \mathbf{e}, \mathbf{g} reacted with ketene tertbutyldimethylsilyl acetal 2 in the presence of a catalytic amount of zinc iodide in acetonitrile to give high yields of the corresponding α-siloxy sulfides $7 \mathbf{b}-\mathbf{e}, \mathbf{g}$ stereoselectively. Similarly, chiral, nonracemic sulfoxides 6a, \mathbf{f}, \mathbf{h}, \mathbf{i} reacted with acetal 2 in acetonitrile to give the chiral, non-racemic α siloxy sulfides $\mathbf{7 a}, \mathbf{f}, \mathbf{h}, \mathbf{i}$ in high yields.

The Pummerer reaction of sulfoxides is a useful method for the synthesis of α-substituted sulfides ${ }^{1}$ and has attracted considerable attention from both synthetic and mechanistic points of view. ${ }^{2}$ The stereoselective Pummerer reaction of optically active sulfoxides is a self-immolative asymmetric transformation ${ }^{3}$ and is of considerable interest, because it would provide a means for the synthesis of chiral, non-racemic α-substituted sulfides. \dagger^{+4} In fact, the stereogenicity transfer from the sulfur of chiral, non-racemic sulfoxides to the carbon α to the sulfur in the sulfides has been reported ${ }^{4 b e, 5}$ in recent investigations. The yields in enantiomeric excess (ee), however, were quite low in acyclic sulfoxides ${ }^{4 b-e, g, h}$ probably due to the formation of the sulfurane intermediate \mathbf{A} by reaction of the generated acetate anion. Several years ago, we reported ${ }^{6}$ a novel silicon-induced Pummerer-type reaction of sulfoxides 1 by using ketene tertbutyldimethylsilyl methyl acetal 2 , which gave α-siloxy sulfides 3 under mild conditions, and applied this method to novel and effective intramolecular Pummerer-type cyclizations of ω amido sulfoxides 4 to afford sulfanyl- N - α-heterocycles 5 involving 4 -to- 7 -membered α-sulfanyl lactams (Scheme 1). ${ }^{7}$ Very recently, we briefly communicated ${ }^{8}$ the first highly asymmetric transformation of chiral, non-racemic acyclic sulfoxides 6 leading to enantiomerically enriched α-siloxy sulfides 7 in high yields using our silicon-induced Pummerertype reaction. $\ddagger{ }^{9}$ In this paper, we report the generality of a highly stereoselective Pummerer-type reaction in various types of acyclic sulfoxides using O-silylated ketene acetal 2 in detail.

Results and Discussion

A typical experimental procedure is as follows for the reaction of sulfoxide syn-6a with siloxy compound 2. A solution of reagents syn-6a and 2 and a catalytic amount of zinc iodide in dry acetonitrile was stirred at $0^{\circ} \mathrm{C}$ for 1 h and then at room temperature for 1 h , followed by the usual work-up, to give ($1 S$,$2 S$)-1,2-bis-(tert-butyldimethylsiloxy)-2-phenethyl 4-methylphenyl sulfide (syn-7a and anti-7a) in the ratio 88:12 in 75% yield (entry 1, Table 1). Similarly, various types of syn and anti β-substituted sulfoxides $\mathbf{6 b}-\mathbf{g}$ reacted with compound 2 in the presence of a catalytic amount of zinc iodide in acetonitrile under nearly the same conditions to give high yields of the corresponding α-siloxy sulfides $\mathbf{7 b}$-g. The relative stereochem-

[^0]

3

4

Scheme 1 Reagents: i, $\mathrm{Ac}_{2} \mathrm{O}$; ii, 2, MeCN; iii, 2
ical ratio (syn:anti) of the diastereoisomeric α-siloxy sulfides was determined by Heathcock's method using ${ }^{1} \mathrm{H}$ NMR spectra. According to the definition, the molecules exist predominantly in conformations having the two hydrogens anti and the aryl group causes an upfield shift of the ${ }^{1} \mathrm{H}$ NMR resonance of the group gauche to it on the vicinal stereocentre.

Table 1 Asymmetric silicon-induced Pummerer-type reactions

${ }^{a}$ Racemic sulfoxides were used except for entries $1,2,11$ and $12{ }^{b}$ Optically active sulfoxides were used. ${ }^{c}$ The configuration of the phenylethyl carbon of compound $\mathbf{6 f}$, which was prepared from α-lithio (S)-methyl p-tolyl sulfoxide and phenylethyl bromide, was determined from the conversion into the known aldehyde ${ }^{11}$ using the reported method. ${ }^{12 d}$ r.t. $=$ room temperature.

Fig. 1

Fig. 2
Therefore, the resonance of the tert-butyl group of anti-isomers occurs at a substantially higher field than does that of the synisomers ${ }^{10}$ (Fig. 1).

The results are summarized in Table 1.
All reactions proceeded under mild conditions with a remarkably high degree of stereospecificity. We were surprised to find that extremely high retention occurred in all β-siloxy-, β -acylamino-, β-alkylamino-, β-alkyl- and β-aryl-substituted sulfoxides and, of course, in both racemic (entries $3-10,13$ and 14) and non-racemic sulfoxides (entries 1,2,11 and 12). Contrary to these findings, a normal Pummerer reaction of both syn- and anti-6a with hot acetic anhydride gave the same 80:20 ratio of diastereoisomeric acetoxy sulfides 8 (Scheme 2). The predominant formation of the syn-isomer is predicted by the following Felkin-Anh model of the well documented ${ }^{10 a}$ thionium ion intermediate (Fig. 2).

In order to ascertain the effect of the sulfoxide itself, we next examined the reaction of sulfoxides $\mathbf{6 h}, \mathbf{6 i}$, having one stereo-

Scheme 2
genic centre on the sulfur atom, with the silyl ether 2 . Known chiral, non-racemic sulfoxides $\mathbf{6 h}$ and $\mathbf{6 i}{ }^{\mathbf{4 g}}$ were treated with compound 2 in the absence of a catalyst in acetonitrile to give the corresponding chiral, non-racemic α-siloxy sulfides $\mathbf{7 h}$ and $7 \mathbf{i}$. In both cases, the optical purity and chemical yield of the Pummerer adducts were greater than those of Oae's approach ${ }^{4 e . g}$ (Table 2).

The stereochemistry of the newly generated stereogenic centre of compound $\mathbf{7 i}$ was determined by conversion into a known derivative: treatment of compound $\mathbf{7 i}$ with acetyl chloride in the presence of a catalytic amount of FeCl_{3} in dry acetonitrile at room temperature for 1 h gave the $(+)-\alpha$-acyloxy sulfide (R)-9, identical with the known sulfide ${ }^{4 g, 13}$ (Scheme 3).

Although details of the mechanism remain unknown, the asymmetric transformation of chiral, non-racemic sulfoxides is explained as follows: silylation of sulfoxides with compound 2 affords an intermediate \mathbf{B}, which may yield an anion

Table 2 Asymmetric silicon-induced Pummerer-type reactions

Sulfoxide ${ }^{\text {a }}$	R	Conditions	$\begin{aligned} & \% \text { ee }^{b} \\ & \left(\% \text { Yield }^{c}\right) \end{aligned}$	$[\alpha]_{\mathrm{D}}^{18}(c$, acetone $)$	Configuration	Oae's approach ${ }^{d}$ $\%$ ee (\% Yield)
(S)-6h	$\mathrm{CO}_{2} \mathrm{Et}$	4 h	87 (75)	+35.8(0.46)	S^{s}	
(R)-6h	$\mathrm{CO}_{2} \mathrm{Et}$	4 h	$86^{\circ}(72)$	-34.8 (0.67)	R^{f}	70 (10)
(S)-6i	CONMe_{2}	12 h	88 (65)	-28.9(1.40)	S	
(R)-6i	CONMe 2	12 h	88^{e} (69)	+ 28.8 (1.23)	R	65 (35)

${ }^{a}(S)-6 \mathrm{~h}:[\alpha]_{\mathrm{D}}^{20}-189\left(c 1.80\right.$, acetone); $(R)-6 \mathrm{~h}:[\alpha]_{\mathrm{D}}^{20}+195\left(c 0.97\right.$, acetone); $(S)-\mathbf{6 i}:[\alpha]_{\mathrm{D}}^{19}-187(c 1.24$, acetone $) ;(R)-6 \mathrm{i}:[\alpha]_{\mathrm{D}}^{18}+192(c 0.83$, acetone). ${ }^{b}$ Determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy with $\mathrm{Eu}(\mathrm{hfc})_{3} .{ }^{c}$ Isolated yield. ${ }^{d}$ See reference 4 e.g. ${ }^{e}$ ee-Value was calculated on the basis of the other ee-values determined with the shift reagent. ${ }^{f}$ The stereochemistry of compound $\mathbf{7 h}$ was tentatively assigned based on the similarity of the shift patterns in the ${ }^{1} \mathrm{H}$ NMR spectra by addition of $\mathrm{Eu}(\mathrm{hfc})_{3}$ to those of compound 7 i .

Scheme 3 Reagents and conditions: $\mathrm{AcCl}, \mathrm{FeCl}_{3}$ (cat.), MeCN , room temp., $1 \mathrm{~h}(64 \%)$
intermediate \mathbf{C} through abstraction of the anti-periplanar hydrogen with a generated ester enolate from the opposite face of the sulfoxide oxygen (Scheme 4). ${ }^{14}$ Then the siloxy group

Scheme 4
may be forced to migrate to the α-position via one of the following three mechanisms; (i) intimate ion-pair mechanism (route a), (ii) radical dissociation-recombination mechanism (route b), ${ }^{* 15}$ and direct carbanion attack (route c) \dagger (Scheme 4, 5).

Experimental

All m.p.s were determined on a Yanaco micro melting apparatus and are uncorrected. IR absorption spectra were recorded on JASCO HPIR-102 and Shimadzu FTIR-8100 spectrophotometers with CHCl_{3} as solvent. ${ }^{1} \mathrm{H}$ NMR spectra were measured on JEOL JNM-FX90Q (90 MHz), JEOL JNMEX270 (270 MHz) and JEOL JNM-GX500 (500 MHz)

[^1]

Scheme 5
spectrometers with CDCl_{3} as solvent with tetramethylsilane as internal standard unless otherwise noted. J-Values are given in Hz . Mass spectra (MS) and high-resolution MS were obtained by ESCO EMD-05A and JEOL JMS-D300 mass spectrometers. Optical rotations were measured in 1 dm cells of $1 \mathrm{~cm}^{3}$ capacity with a Perkin-Elmer 241 instrument; $[\alpha]_{D}$-values are given in units of $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$. E. Merck silica gel 60 (70-230 mesh ASTM) for column chromatography and E. Merck precoated TLC plates with silica gel F_{254} for preparative TLC (PLC) were used. Organic layers were dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The known sulfoxides $\mathbf{6 d},{ }^{16} \mathbf{6 h},{ }^{4 g}$ and $\mathbf{6 i}{ }^{4 g}$ were prepared by the reported method, and other starting sulfoxides were prepared by the same procedure as those reported methods. ${ }^{16.17}$
$\left(\mathrm{S}_{\mathrm{S}}\right)-[(2 \mathrm{~S})$-2-(tert-Butyldimethylsiloxy)-2-phenylethyl] 4Methylphenyl Sulfoxide syn-6a.-($\left.S_{\mathrm{s}}, 1 S\right)$-2-[(4-methylphenyl)-sulfinyl]-1-phenylethanol ($379 \mathrm{mg}, 1.46 \mathrm{mmol}$), tert-butyldimethylsilyl chloride ($440 \mathrm{mg}, 2.92 \mathrm{mmol}$), 4-(dimethylamino)pyridine (DMAP) ($712 \mathrm{mg}, 5.84 \mathrm{mmol}$) and dimethylformamide (DMF) ($7 \mathrm{~cm}^{3}$) gave compound syn-6a (510 mg , 93%) as an oil; $[\alpha]_{\mathrm{D}}^{24}-64.8\left(c 1.24, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}-0.19$ and 0.04 (each 3 H , each s, $\mathrm{Me}_{2} \mathrm{Si}$), $0.86\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right), 2.41$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), $2.94\left(1 \mathrm{H}, \mathrm{dd}, J 7.26\right.$ and $\left.12.9,1-\mathrm{H}^{\mathrm{a}}\right), 3.38(1 \mathrm{H}, \mathrm{dd}, J 6.60$ and $\left.12.9,1-\mathrm{H}^{\mathrm{b}}\right), 4.98(1 \mathrm{H}, \mathrm{dd}, J 6.60$ and $7.26,2-\mathrm{H})$ and $7.26-7.51(9$ $\mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; m / z 317\left(\mathrm{M}^{+}-\mathrm{Bu}^{t}\right)$ [Found: $\left(\mathrm{M}^{+}-\mathrm{Bu}^{t}\right)$, 317.1056. $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{SSi}$ requires $m / z, 317.1031$].
$\left(\mathrm{S}_{\mathrm{S}}\right)-[(2 \mathrm{R})-2-($ tert-Butyldimethylsiloxy)-2-phenylethyl $]$ 4Methylphenyl Sulfoxide anti-6a.- ($\left.S_{\mathrm{S}}, 1 R\right)$-2-[(4-methylphenyl)-sulfinyl]-1-phenylethanol $(98.4 \mathrm{mg}, 0.378 \mathrm{mmol})$, tert-butyldimethylsilyl chloride ($114.3 \mathrm{mg}, 0.757 \mathrm{mmol}$), DMAP (185 mg , 1.51 mmol) and DMF ($2.5 \mathrm{~cm}^{3}$) gave compound anti- $6 \mathbf{a}$ (112
$\mathrm{mg}, 79 \%$) as an oil; $[\alpha]_{\mathrm{D}}^{24}-335\left(c 0.74, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}-0.08$ and 0.19 (each 3 H , each s, $\mathrm{Me}_{2} \mathrm{Si}$), $0.95\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{1}\right), 2.41(3 \mathrm{H}, \mathrm{s}$, $\mathrm{Me})$, $2.87\left(1 \mathrm{H}\right.$, dd, $J 2.74$ and $\left.12.8,1-\mathrm{H}^{\mathrm{a}}\right), 2.94(1 \mathrm{H}$, dd, $J 10.1$ and $\left.12.8,1-\mathrm{H}^{\mathrm{b}}\right), 5.27(1 \mathrm{H}$, dd, $J 2.74$ and $10.1,2-\mathrm{H})$ and $7.20-$ $7.53(9 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; m / z 317\left(\mathrm{M}^{+}-\mathrm{Bu}^{1}\right)$ [Found: $\left(\mathrm{M}^{+}-\mathrm{Bu}^{\mathrm{I}}\right)$, 317.1060].
($\left.\mathrm{S}_{\mathrm{s}}{ }^{*}\right)$-[(2S*)-2-(tert-Butyldiphenylsiloxy)-2-phenylethyl] 4Methylphenyl Sulfoxide syn-6c.- $\left(S_{\mathrm{s}}{ }^{*}, 1 S^{*}\right)$-2-[(4-methylphen-yl)sulfinyl]-1-phenylethanol ($100 \mathrm{mg}, 0.384 \mathrm{mmol}$), tert-butyldiphenylsilyl chloride ($0.15 \mathrm{~cm}^{3}, 0.576 \mathrm{mmol}$), imidazole (41.8 $\mathrm{mg}, 0.615 \mathrm{mmol}$) and DMF ($2 \mathrm{~cm}^{3}$) gave compound syn- 6 c (183 $\mathrm{mg}, 96 \%$) as an oil; $\delta_{\mathrm{H}} 1.03\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right), 2.37(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.91$ (1 H , dd, $J 7.92$ and $12.9,1-\mathrm{H}^{\mathrm{a}}$), $3.34(1 \mathrm{H}, \mathrm{dd}, J 5.61$ and 12.9 , $\left.1-\mathrm{H}^{\mathrm{b}}\right), 5.04(1 \mathrm{H}, \mathrm{dd}, J 5.61$ and $7.92,2-\mathrm{H})$ and $7.19-7.81(19 \mathrm{H}$, $\mathrm{m}, \mathrm{ArH}) ; m / z 441\left(\mathrm{M}^{+}-\mathrm{Bu}^{t}\right)$ [Found: ($\mathrm{M}^{+}-\mathrm{Bu}^{+}$), 441.1340. $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{SSi}$ requires $\left.m / z, 441.1342\right]$.
$\left(\mathrm{S}_{\mathrm{s}}{ }^{*}\right)-\left[\left(2 \mathrm{R}^{*}\right)\right.$-2-(tert-Butyldiphenylsiloxy)-2-phenylethyl $] 4$ Methylphenyl Sulfoxide anti-6c.- $\left(S_{\mathrm{S}}{ }^{*}, 1 R^{*}\right)-2-[(4$-methyl-phenyl)sulfinyl]-1-phenylethanol ($100 \mathrm{mg}, 0.384 \mathrm{mmol}$), tertbutyldiphenylsilyl chloride ($0.15 \mathrm{~cm}^{3}, 0.576 \mathrm{mmol}$), imidazole $(41.8 \mathrm{mg}, 0.615 \mathrm{mmol})$ and DMF ($2 \mathrm{~cm}^{3}$) gave compound anti-6c $(169 \mathrm{mg}, 88 \%)$ as an oil; $\delta_{\mathrm{H}} 1.10\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}\right), 2.37(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, $2.94\left(1 \mathrm{H}, \mathrm{dd}, J 2.97\right.$ and $\left.13.2,1-\mathrm{H}^{2}\right), 3.14(1 \mathrm{H}$, dd, $J 9.57$ and 13.2, $1-\mathrm{H}^{\mathrm{b}}$), $5.21(1 \mathrm{H}, \mathrm{dd}, J 2.97$ and $9.57,2-\mathrm{H})$ and $7.05-7.70$ $(19 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; m / z 498\left(\mathrm{M}^{+}\right)$(Found: M^{+}, 498.2038. $\mathrm{C}_{31} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{SSi}$ requires $\mathrm{M}, 498.2046$).
($\left.\mathrm{S}_{\mathrm{s}}{ }^{*}, 1 \mathrm{~S}^{*}\right)$-N-Benzyl-2-[(4-methylphenyl)sulfinyl]-1-phenylethanamine syn-6e.- $\left(S_{\mathrm{s}}{ }^{*}, 1 S^{*}\right)$-2-[(4-methylphenyl)sulfinyl]-1phenylethanamine ($200 \mathrm{mg}, 0.771 \mathrm{mmol}$), benzaldehyde (0.078 $\mathrm{cm}^{3}, 0.771 \mathrm{mmol}$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(4 \mathrm{~cm}^{3}\right)$, sodium boranuide (116.7 $\mathrm{mg}, 3.08 \mathrm{mmol}$) and $\mathrm{MeOH}\left(4 \mathrm{~cm}^{3}\right)$ gave compound syn-6e ($242 \mathrm{mg}, 90 \%$) as an oil; $\delta_{\mathrm{H}} 2.39(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.82(1 \mathrm{H}, \mathrm{dd}, J 4.95$ and $\left.13.2,2-\mathrm{H}^{\mathrm{a}}\right), 3.24\left(1 \mathrm{H}, \mathrm{dd}, J 8.57\right.$ and $\left.13.2,2-\mathrm{H}^{\mathrm{b}}\right), 3.51$ and 3.67 (each 1 H , each d, $J 13.2, \mathrm{PhCH}_{2}$), 4.19 ($1 \mathrm{H}, \mathrm{dd}, J 4.95$ and $8.57,1-\mathrm{H}$) and $7.21-7.47$ ($14 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).
($\left.\mathrm{S}_{\mathrm{S}}{ }^{*}, 1 \mathrm{R}^{*}\right)$-N-Benzyl-2-[(4-methylphenyl)sulfinyl $]-1-$ phenyl-ethanamineanti-6e.- $\left(S_{\mathrm{S}}{ }^{*}, 1 R^{*}\right)$-2-[(4-methylphenyl)sulfinyl]-1phenylethanamine ($200 \mathrm{mg}, 0.771 \mathrm{mmol}$), benzaldehyde (0.078 $\mathrm{cm}^{3}, 0.771 \mathrm{mmol}$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(4 \mathrm{~cm}^{3}\right.$), sodium boranuide (116.7 $\mathrm{mg}, 3.08 \mathrm{mmol})$ and $\mathrm{MeOH}\left(4 \mathrm{~cm}^{3}\right)$ gave compound anti-6e ($228 \mathrm{mg}, 84 \%$) as an oil; $\delta_{\mathrm{H}} 2.39(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.91(1 \mathrm{H}, \mathrm{dd}, J 2.97$ and $\left.13.5,2-\mathrm{H}^{\mathrm{a}}\right), 3.06\left(1 \mathrm{H}, \mathrm{dd}, J 10.6\right.$ and $\left.13.5,2-\mathrm{H}^{\mathrm{b}}\right), 3.59$ and 3.69 (each 1 H , each d, $J 13.2, \mathrm{PhCH}_{2}$), 4.22 (1 H , dd, $J 2.97$ and 10.6, 1-H) and 7.24-7.47 ($14 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).
(S_{S})-4-Methylphenyl (2S)-2-Phenylpropyl Sulfoxide syn-6f and $\left(\mathrm{S}_{\mathrm{s}}\right)-4$-Methylphenyl (2R)-2-Phenylpropyl Sulfoxide anti-6f.-To a solution of (S)-methyl p-tolyl sulfoxide ($2.08 \mathrm{~g}, 13.5$ mmol) in tetrahydrofuran (THF) $\left(10 \mathrm{~cm}^{3}\right)$ was added a solution of lithium diisopropylamide (LDA) [prepared from diisopropylamine ($2.4 \mathrm{~cm}^{3}, 17.1 \mathrm{mmol}$) and a $1.6 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of butyllithium in hexane ($10.6 \mathrm{~cm}^{3}, 17.0 \mathrm{mmol}$)] in THF (40 cm^{3}). The mixture was cooled to $-78^{\circ} \mathrm{C}$ dropwise under nitrogen, stirred for 30 min at $-78^{\circ} \mathrm{C}$, and α-phenylethyl bromide ($3.6 \mathrm{~g}, 19.5 \mathrm{mmol}$) was then added to the mixture. After 30 min , the reaction mixture was then quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$, then was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed with brine, dried, and concentrated under reduced pressure. The residue was purified by column chromatography with $50-100 \%$ AcOEt in hexane to give title compound 6 (3.69 $\mathrm{g}, 100 \%$) as crystals, which were repurified by HPLC and recrystallized to give pure samples of each diastereoisomer: syn6f (92% de): crystals; m.p. $89-91^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane); $[\alpha]_{\mathrm{D}}^{23}-129\left(c 1.08, \mathrm{CHCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1} 3000,1600,1495,1086$
and 1053; $\delta_{\mathrm{H}} 1.40(3 \mathrm{H}, \mathrm{d}, J 7.3,2-\mathrm{Me}), 2.40(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.88(1$ H , dd, $J 9.6$ and $\left.12.9,1-\mathrm{H}^{\mathrm{a}}\right), 3.07\left(1 \mathrm{H}, \mathrm{dd}, J 5.3\right.$ and $\left.12.9,1-\mathrm{H}^{\mathrm{b}}\right)$, $3.39(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H})$ and $7.24-7.56(9 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; m / z 258\left(\mathrm{M}^{+}\right)$ (Found: $\mathrm{M}^{+}, 258.1063 . \mathrm{C}_{16} \mathrm{H}_{18} \mathrm{OS}$ requires M, 258.1076); anti6f (93% de): crystals; m.p. $95-98{ }^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane); $[\alpha]_{\mathrm{D}}^{23}-176\left(c 1.06, \mathrm{CHCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1} 3000,1600,1495,1086$ and 1053 ; $\delta_{\mathrm{H}} 1.52(3 \mathrm{H}, \mathrm{d}, J 6.9,2-\mathrm{Me}), 2.40(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.79$ (1 $\mathrm{H}, \mathrm{dd}, J 10.5$ and $\left.12.9,1-\mathrm{H}^{\mathrm{a}}\right), 3.12\left(1 \mathrm{H}, \mathrm{dd}, J 4.6\right.$ and $12.9,1-\mathrm{H}^{\mathrm{b}}$), $3.32(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H})$ and $7.18-7.53(9 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$; $m / z 258\left(\mathrm{M}^{+}\right)$ (Found: M^{+}, 258.1096; C, 74.2; H, 7.05; S, 12.45. $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{OS}$ requires $\mathrm{C}, 74.35 ; \mathrm{H}, 7.05 ; \mathrm{S}, 12.40 \%$).
$\left(\mathrm{S}_{\mathrm{s}}{ }^{*}\right)-\left[\left(2 \mathrm{~S}^{*}\right)-2\right.$-(tert-Butyldimethylsiloxy)propyl $] 4$-Methylphenyl Sulfoxide syn- 6 g .- $\left(S_{\mathrm{s}}{ }^{*}, 2 S^{*}\right)-1-[(4-m e t h y l p h e n y 1)$ sulfin-yl]propan-2-ol ($1.15 \mathrm{~g}, 5.82 \mathrm{mmol}$), tert-butyldimethylsilyl chloride ($2.06 \mathrm{~g}, 13.6 \mathrm{mmol}$), DMAP ($3.33 \mathrm{~g}, 27.3 \mathrm{mmol}$) and DMF ($18 \mathrm{~cm}^{3}$) gave compound syn- $6 \mathrm{~g}(1.42 \mathrm{~g}, 78 \%)$ as an oil; δ_{H} -0.02 and $0.00\left(\right.$ each 3 H , each s, $\left.\mathrm{Me}_{2} \mathrm{Si}\right), 0.81\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}\right), 1.32$ $\left(3 \mathrm{H}, \mathrm{d}, J 6.27,3-\mathrm{H}_{3}\right), 2.35(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.68(1 \mathrm{H}, \mathrm{dd}, J 7.59 \mathrm{and}$ $\left.12.9,1-\mathrm{H}^{\mathrm{a}}\right), 2.99\left(1 \mathrm{H}, \mathrm{dd}, J 4.95\right.$ and $\left.12.9,1-\mathrm{H}^{\mathrm{b}}\right), 4.09(1 \mathrm{H}$, $\mathrm{m}, 2-\mathrm{H}$) and 7.26 and 7.59 (each 2 H , each d, $J 7.59, \mathrm{ArH}$); m / z $312\left(\mathrm{M}^{+}\right)$(Found: $\mathrm{M}^{+}, 312.1567 . \mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{SSi}$ requires M , 312.1577).
($\left.\mathrm{S}_{\mathrm{s}}{ }^{*}\right)-\left[\left(2 \mathrm{R}^{*}\right)-2\right.$-(tert-Butyldimethylsiloxy)propyl $] 4$-Methylphenyl Sulfoxide anti- 6 g .- $\left(S_{\mathrm{s}}{ }^{*}, 2 R^{*}\right)-1-[(4$-methylphenyl)sul-finyl]propan-2-ol ($380 \mathrm{mg}, 1.92 \mathrm{mmol}$), tert-butyldimethylsilyl chloride ($580 \mathrm{mg}, 3.83 \mathrm{mmol}$), DMAP ($937 \mathrm{mg}, 7.68 \mathrm{mmol}$) and DMF ($10 \mathrm{~cm}^{3}$) gave compound anti- $6 \mathrm{~g}(587 \mathrm{mg}, 98 \%)$ as an oil; $\delta_{\mathrm{H}} 0.13$ and 0.20 (each 3 H , each s, $\left.\mathrm{Me}_{2} \mathrm{Si}\right), 0.94\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\prime}\right)$, $1.23\left(3 \mathrm{H}, \mathrm{d}, J 6.27,3-\mathrm{H}_{3}\right), 2.40(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.70(1 \mathrm{H}, \mathrm{dd}, J 9.24$ and $\left.12.9,1-\mathrm{H}^{\mathrm{a}}\right), 2.78\left(1 \mathrm{H}\right.$, dd, $J 3.30$ and $\left.12.9,1-\mathrm{H}^{\mathrm{b}}\right), 4.41(1 \mathrm{H}$, $\mathrm{m}, 2-\mathrm{H}$) and 7.30 and 7.50 (each 2 H , each d, $J 8.25, \mathrm{ArH}$); m / z $312\left(\mathrm{M}^{+}\right)$(Found: $\left.\mathbf{M}^{+}, 312.1581\right)$.

General Procedure for the Pummerer-type Reaction of OSilylated Ketene Acetal $\mathbf{2}$ with Sulfoxides 6a, $\mathbf{6 c}-\mathbf{g}$.-To a stirred solution of a sulfoxide $6(0.100 \mathrm{mmol})$ and $\mathrm{ZnI}_{2}(0.01-0.02$ $\mathrm{mmol})$ in dry $\mathrm{MeCN}\left(3 \mathrm{~cm}^{3}\right)$ was added dropwise ketene tertbutyldimethylsilyl methyl acetal $2(0.500-1.00 \mathrm{mmol})$ at the temperature indicated in Table 1 for 2-12 h under nitrogen. The mixture was then poured into saturated aq. sodium hydrogen carbonate and repeatedly extracted with methylene dichloride. The organic layer was washed with brine, dried, and evaporated. The residue was purified by PLC to give the corresponding α-siloxy sulfide 7 in yields between 45 and 93%.
(1S,2S)-1,2-Bis-(tert-butyldimethylsiloxy)-2-phenylethyl 4Methylphenyl Sulfide syn-7a.-syn-6a $\left\{[x]_{\mathrm{D}}^{24}-64.8\right.$ (c 1.24, $\left.\left.\mathrm{CHCl}_{3}\right), 48.0 \mathrm{mg}, 0.128 \mathrm{mmol}\right\}$, the acetal $2(120 \mathrm{mg}, 0.642$ $\mathrm{mmol}), \mathrm{ZnI}_{2}(4.1 \mathrm{mg}, 0.0128 \mathrm{mmol})$ and $\mathrm{MeCN}\left(2 \mathrm{~cm}^{3}\right)$ gave compound 7a (syn:anti $88: 12 ; 45.3 \mathrm{mg}, 75 \%$). Compound syn7a was isolated in a pure state by column chromatography, oil; $[\alpha]_{\mathrm{D}}^{24}-17.5\left(c \quad 1.16, \mathrm{CHCl}_{3}\right) ; v_{\text {max }} / \mathrm{cm}^{-1} 2920$ and $1495 ; \delta_{\mathrm{H}}$ $-0.08\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{3} \mathrm{Si}\right), 0.07(3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi}), 0.89$ and 0.91 (each 9 H , each s, $2 \times \mathrm{Bu}^{1}$), $2.32(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 4.87$ and 5.11 (each 1 H , each d, $J 4.3,1$ - and 2-H) and $7.05-7.64(9 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; m / z 488$ $\left(\mathrm{M}^{+}\right)$(Found: M^{+}, 488.2594; C, 66.35; H, 8.95; S, 6.35%. $\mathrm{C}_{27} \mathrm{H}_{44} \mathrm{O}_{2} \mathrm{SSi}_{2}$ requires $\mathrm{M}, 488.2597 ; \mathrm{C}, 66.30 ; \mathrm{H}, 9.10 ; \mathrm{S}$, 6.55%).
(1S,2R)-1,2-Bis-(tert-butyldimethylsiloxy)-2-phenylethyl 4Methylphenyl Sulfide anti-7a.-anti-6a $\left\{[\alpha]_{\mathrm{D}}^{24}-335\right.$ (c 0.74 , $\left.\left.\mathrm{CHCl}_{3}\right), 39.3 \mathrm{mg}, 0.105 \mathrm{mmol}\right\}$, the acetal $2(98.8 \mathrm{mg}, 0.525$ $\mathrm{mmol}), \mathrm{ZnI}_{2}(3.3 \mathrm{mg}, 0.0105 \mathrm{mmol})$ and $\mathrm{MeCN}\left(2 \mathrm{~cm}^{3}\right)$ gave compound 7a (syn:anti $4: 96 ; 40.7 \mathrm{mg}, 82 \%$). Diastereoisomer anti-7a was isolated in a pure state by column chromatography, oil; $[\alpha]_{\mathrm{D}}^{24}-7.4$ (c 1.75, CHCl_{3}); $v_{\max } / \mathrm{cm}^{-1} 2940$ and 1495;
$\delta_{\mathrm{H}}-0.31,-0.20,-0.10$ and -0.01 (each 3 H , each s, $2 \times$ $\mathrm{Me}_{2} \mathrm{Si}$), 0.72 and 0.86 (each 9 H , each s, $2 \times \mathrm{Bu}^{t}$), $2.32(3 \mathrm{H}, \mathrm{s}$, Me), 4.74 and 5.02 (each 1 H , each d, J5.9, 1 - and $2-\mathrm{H}$) and 7.06-7.41 (9 H, m, ArH); $m / z 488\left(\mathrm{M}^{+}\right)$(Found: $\mathrm{M}^{+}, 488.2603$).
(1S*,2S*)-1-(tert-Butyldimethylsiloxy)-2-(tert-butyldiphenyl-siloxy)-2-phenylethyl 4-Methylphenyl Sulfide syn-7c.-Compound syn- $6 \mathbf{c}(43.3 \mathrm{mg}, 0.087 \mathrm{mmol})$, the acetal $2(81.8 \mathrm{mg}$, $0.435 \mathrm{mmol}), \mathrm{ZnI}_{2}(2.7 \mathrm{mg}, 0.0087 \mathrm{mmol})$ and $\mathrm{MeCN}\left(3 \mathrm{~cm}^{3}\right)$ gave product 7c (syn: anti $95: 5 ; 44.0 \mathrm{mg}, 85 \%$). Diastereoisomer syn-7c was isolated in a pure state by column chromatography, oil; $v_{\max } / \mathrm{cm}^{1} 2910$ and $1495 ; \delta_{\mathrm{H}}-0.48$ and 0.44 (each 3 H , each $\left.\mathrm{s}, \mathrm{Me}_{2} \mathrm{Si}\right), 0.74$ and 1.08 (each 9 H , each s, $2 \times \mathrm{Bu}^{t}$), $2.28(3 \mathrm{H}, \mathrm{s}$, Me), 4.91 and 4.96 (each 1 H , each d, $J 4.3,1$ - and $2-\mathrm{H}$) and 7.15-7.82 ($19 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); m/z $612\left(\mathrm{M}^{+}\right)$(Found: M^{+}, 612.2915. $\mathrm{C}_{37} \mathrm{H}_{48} \mathrm{O}_{2} \mathrm{SSi}_{2}$ requires $\mathrm{M}, 612.2913$).
(1S*,2R*)-1-(tert-Butyldimethylsiloxy)-2-(tert-butyldiphenyl-siloxy)-2-phenylethyl 4-Methylphenyl Sulfide anti-7c.-Compound anti- $6 \mathbf{c}(38.5 \mathrm{mg}, 0.077 \mathrm{mmol})$, the acetal $2(72.7 \mathrm{mg}$, $0.387 \mathrm{mmol}), \mathrm{ZnI}_{2}(2.5 \mathrm{mg}, 0.0077 \mathrm{mmol})$ and $\mathrm{MeCN}\left(3 \mathrm{~cm}^{3}\right)$ gave compound 7c (syn:anti $1: 99 ; 34.0 \mathrm{mg}, 74 \%$). Diastereoisomer anti-7c was isolated in a pure state by column chromatography, oil; $v_{\max } / \mathrm{cm}^{-1} 2910$ and $1495 ; \delta_{\mathrm{H}}-0.22$ and -0.15 (each 3 H , each s, $\mathrm{Me}_{2} \mathrm{Si}$), 0.73 and 1.02 (each 9 H , each s, $\left.2 \times \mathrm{Bu}^{t}\right), 2.30(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 4.86$ and 5.13 (each 1 H , each d, $J 4.0$, $1-$ and $2-\mathrm{H})$ and $6.94-7.71(19 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; m / z 612\left(\mathrm{M}^{+}\right)$ (Found: $\mathrm{M}^{+}, 612.2911 ; \mathrm{C}, 72.55 ; \mathrm{H}, 7.90 ; \mathrm{S}, 5.35 \% . \mathrm{C}_{37} \mathrm{H}_{48^{-}}$ $\mathrm{O}_{2} \mathrm{SSi}_{2}$ requires $\mathrm{M}, 612.2911 ; \mathrm{C}, 72.50, \mathrm{H}, 7.90 ; \mathrm{S}, 5.25 \%$).
(1S*,2S*)-N-Acetyl-2-(tert-butyldimethylsiloxy)-2-[(4-meth-ylphenyl)sulfanyl]-1-phenylethylamine syn-7d.-Compound $\operatorname{syn}-6 d(29.6 \mathrm{mg}, 0.098 \mathrm{mmol})$, the acetal $2(185 \mathrm{mg}, 0.983 \mathrm{mmol})$, $\mathrm{ZnI}_{2}(5.5 \mathrm{mg}, 0.0098 \mathrm{mmol})$ and $\mathrm{MeCN}\left(1 \mathrm{~cm}^{3}\right)$ gave compound 7d (syn:anti $77: 23 ; 38.1 \mathrm{mg}, 93 \%$). Compound syn-7d was isolated in a pure state by column chromatography, crystals; m.p. $91-93^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane); $v_{\text {max }} / \mathrm{cm}^{-1} 3441,3009$, 1674 and $1550 ; \delta_{\mathrm{H}}-0.32$ and -0.04 (total 6 H , each s, $\mathrm{Me}_{2} \mathrm{Si}$), $0.80\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right), 2.08(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.36(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 5.13(1 \mathrm{H}$, $\mathrm{d}, J 2.0,2-\mathrm{H}), 5.20(1 \mathrm{H}, \mathrm{dd}, J 2.0$ and $8.2,1-\mathrm{H}), 6.36(1 \mathrm{H}, \mathrm{d}, J 8.2$, NH) and 7.10-7.64 ($9 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $m / z 358\left(\mathrm{M}^{+}\right)$(Found: M^{+}, 358.1294. $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{NO}_{2} \mathrm{SSi}$ requires $\mathrm{M}, 358.1294$).
(1R*,2S*)-N-Acetyl-2-(tert-butyldimethylsiloxy)-2-[(4-meth-ylphenyl)sulfanyl]-1-phenylethylamine anti-7d.-Compound anti-6d ($28.9 \mathrm{mg}, 0.096 \mathrm{mmol}$), the acetal $2(90.2 \mathrm{mg}, 0.48$ $\mathrm{mmol}), \mathrm{ZnI}_{2}(3.1 \mathrm{mg}, 0.0096 \mathrm{mmol})$ and $\mathrm{MeCN}\left(1 \mathrm{~cm}^{3}\right)$ gave compound 7d (syn: anti $5: 95 ; 37.6 \mathrm{mg}, 76 \%$). Diastereoisomer anti-7d was isolated in a pure state by column chromatography, crystals; m.p. $133-135^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane); $v_{\text {max }} / \mathrm{cm}^{-1}$ $3447,3011,1674$ and $1493 ; \delta_{\mathrm{H}}-0.076$ and -0.05 (total 6 H , each $\left.\mathrm{s}, \mathrm{Me}_{2} \mathrm{Si}\right), 0.88\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right), 2.00(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.33(3 \mathrm{H}, \mathrm{s}$, $\mathrm{Me}), 5.13(1 \mathrm{H}, \mathrm{dd}, J 7.6$ and $4.6,1-\mathrm{H}), 5.39(1 \mathrm{H}, \mathrm{d}, J 4.6,2-\mathrm{H})$, $6.18(1 \mathrm{H}, \mathrm{d}, J 7.6, \mathrm{NH})$ and $7.11-7.43(9 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \mathrm{m} / \mathrm{z}$ $358\left(\mathrm{M}^{+}\right)$(Found: $\mathrm{M}^{+}, 358.1296 ; \mathrm{C}, 66.2 ; \mathrm{H}, 8.0 ; \mathrm{N}, 3.35 ; \mathrm{S}$, $7.75 \%) . \mathrm{C}_{23} \mathrm{H}_{33} \mathrm{NO}_{2} \mathrm{SSi}$ requires $\mathrm{C}, 66.45 ; \mathrm{H}, 8.00 ; \mathrm{N}, 3.35 ; \mathrm{S}$, 7.70%).
(1S*,2S*)-N-Benzyl-2-(tert-butyldimethylsiloxy)-2-[(4-meth-ylphenyl)sulfanyl]-1-phenylethylamine syn-7e.-Compound syn-6e $(31.3 \mathrm{mg}, 0.090 \mathrm{mmol})$, the acetal $2(84.3 \mathrm{mg}, 0.449$ $\mathrm{mmol}), \mathrm{ZnI}_{2}(3.9 \mathrm{mg}, 0.0090 \mathrm{mmol})$ and $\mathrm{MeCN}\left(1 \mathrm{~cm}^{3}\right)$ gave compound 7 e (syn:anti $92: 8 ; 28.7 \mathrm{mg}, 69 \%$). The diastereoisomers could not be separated in a pure state by column chromatography. The product was an oil; $v_{\max } / \mathrm{cm}^{-1} 3350,2930$, 1493 and $1454 ; \delta_{\mathrm{H}}$ (signals of syn-7e) -0.09 and 0.00 (total $92 / 100 \times 6 \mathrm{H}$, each s, $\left.\mathrm{Me}_{2} \mathrm{Si}\right), 0.87\left(92 / 100 \times 9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right), 2.31$ $(92 / 100 \times 3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.49$ and $3.75(92 / 100 \times 2 \mathrm{H}, \mathrm{ABq}, J$
13.5, $\mathrm{CH}_{2} \mathrm{Ph}$), 3.89 and 5.08 (each $92 / 100 \times 1 \mathrm{H}$, each d, $J 5.9$, 1 - and $2-\mathrm{H}$) and $7.00-7.42(92 / 100 \times 14 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; m / z 406$ $\left(\mathrm{M}^{+}\right)$(Found: $\mathrm{M}^{+}, 406.1645 . \mathrm{C}_{28} \mathrm{H}_{37} \mathrm{NOSSi}$ requires M , 406.1658).
(1R*,2S*)-N-Benzyl-2-(tert-butyldimethylsiloxy)-2-[(4-meth-ylphenyl)sulfanyl]-1-phenylethylamine anti-7e.-Compound anti-6e $(29.8 \mathrm{mg}, 0.085 \mathrm{mmol})$, the acetal $2(80.2 \mathrm{mg}$, $0.427 \mathrm{mmol}), \mathrm{ZnI}_{2}(2.7 \mathrm{mg}, 0.0085 \mathrm{mmol})$ and $\mathrm{MeCN}\left(1 \mathrm{~cm}^{3}\right)$ gave compound 7 e (syn:anti $15: 85 ; 23.6 \mathrm{mg}, 60 \%$). The diastereoisomers could not be separated in a pure state by column chromatography. The product was an oil; $v_{\text {max }} / \mathrm{cm}^{-1}$ $3325,2930,1493$ and $1454 ; \delta_{\mathrm{H}}$ (signals of anti-7e) -0.41 and -0.07 (total $85 / 100 \times 6 \mathrm{H}$, each s, $\left.\mathrm{Me}_{2} \mathrm{Si}\right), 0.7(85 / 100 \times 9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{Bu}^{t}\right), 2.35(85 / 100 \times 3 \mathrm{H}, \mathrm{s}$, Me), 3.34 and $3.62(85 / 100 \times 2 \mathrm{H}$, $\left.\mathrm{ABq}, J 13.2, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.63$ and 4.97 (each $85 / 100 \times 1 \mathrm{H}$, each d, $J 7.3,1-$ and $2-\mathrm{H})$ and $7.06-7.42(85 / 100 \times 14 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ (Found: C, $72.35 ; \mathrm{H}, 8.15 ; \mathrm{N}, 3.05 ; \mathrm{S}, 6.8 . \mathrm{C}_{28} \mathrm{H}_{37}$ NOSSi requires C, $72.50 ; \mathrm{H}, 8.05 ; \mathrm{N}, 3.00 ; \mathrm{S}, 6.90 \%$).
(1S,2S)-1-(tert-Butyldimethylsiloxy)-1-[(4-methylphenyl)sul-fanyl]-2-phenylpropane syn-7f.-Compound syn-6f $(35.0 \mathrm{mg}$, $0.136 \mathrm{mmol})$, the acetal $2(128 \mathrm{mg}, 0.678 \mathrm{mmol}), \mathrm{ZnI}_{2}(8.7 \mathrm{mg}$, $0.027 \mathrm{mmol})$ and $\mathrm{MeCN}\left(2 \mathrm{~cm}^{3}\right)$ gave substrate syn- $\mathbf{6 f}(18.6 \mathrm{mg}$, 53% recovery) and compound 7 f (syn:anti $90: 10 ; 22.6 \mathrm{mg}$, 45%). The diastereoisomers could not be separated in a pure state by column chromatography. The product had $[\alpha]_{\mathrm{D}}^{24}$ $-66.9\left(c 0.639, \mathrm{CHCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1} 2960,1600$ and $1493 ; \delta_{\mathrm{H}}$ -0.217 and -0.021 (each $10 / 100 \times 3 \mathrm{H}$, each s, $\left.\mathrm{Me}_{2} \mathrm{Si}\right),-0.18$ and $0.00\left(\right.$ each $90 / 100 \times 3 \mathrm{H}$, each $\left.\mathrm{s}, \mathrm{Me}_{2} \mathrm{Si}\right), 0.76(10 / 100 \times 9$ $\left.\mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right), 0.88\left(90 / 100 \times 9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right), 1.38(10 / 100 \times 3 \mathrm{H}, \mathrm{d}, J$ $\left.6.9,3-\mathrm{H}_{3}\right), 1.44\left(90 / 100 \times 3 \mathrm{H}, \mathrm{d}, J 6.9,3-\mathrm{H}_{3}\right), 2.25(90 / 100 \times 3$ $\mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.35(10 / 100 \times 3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.04(10 / 100 \times 1 \mathrm{H}$, quint, $J 6.9,2-\mathrm{H}), 3.21(90 / 100 \times 1 \mathrm{H}, \mathrm{dt}, J 5.0$ and $6.9,2-\mathrm{H}), 5.04$ $(10 / 100 \times 1 \mathrm{H}, \mathrm{d}, J 6.9,1-\mathrm{H}), 5.13(90 / 100 \times 1 \mathrm{H}, \mathrm{d}, J 5.0,1-\mathrm{H})$ and 7.09-7.61 (9 H, m, ArH); m/z $372\left(\mathrm{M}^{+}\right)$(Found: M^{+}, 372.1955. $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{OSSi}$ requires $\mathrm{M}, 372.1943$).
(1S,2R)-1-(tert-Butyldimethylsiloxy)-1-[(4-methylphenyl)sul-fanyl]-2-phenylpropane anti-7f.-Compound anti-6f $(37.2 \mathrm{mg}$, $0.144 \mathrm{mmol})$, the acetal $2(136 \mathrm{mg}, 0.723 \mathrm{mmol}), \mathrm{ZnI}_{2}(9.2 \mathrm{mg}$, $0.029 \mathrm{mmol})$ and $\mathrm{MeCN}\left(2 \mathrm{~cm}^{3}\right)$ gave substrate anti-6f $(14.1 \mathrm{mg}$, 38% recovery) and compound 7f (syn: anti $24: 76 ; 30.2 \mathrm{mg}, 56 \%$) as an oil. The isomers could not be separated in a pure state by column chromatography; $[\alpha]_{\mathrm{D}}^{24}+95.0\left(c \quad 0.82, \mathrm{CHCl}_{3}\right)$; $v_{\text {max }} / \mathrm{cm}^{-1} 2960,1601$ and $1493 ; \delta_{\mathrm{H}}-0.217$ and -0.021 (each $76 / 100 \times 3 \mathrm{H}$, each $\mathrm{s}, \mathrm{Me}_{2} \mathrm{Si}$), -0.18 and 0.00 (each 24/ $100 \times 3 \mathrm{H}$, each s, $\left.\mathrm{Me}_{2} \mathrm{Si}\right), 0.76\left(76 / 100 \times 9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right), 0.88$ $\left(24 / 100 \times 9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right), 1.38\left(76 / 100 \times 3 \mathrm{H}, \mathrm{d}, J 6.9,3-\mathrm{H}_{3}\right)$, $1.44\left(24 / 100 \times 3 \mathrm{H}, \mathrm{d}, J 6.9,3-\mathrm{H}_{3}\right), 2.25(24 / 100 \times 3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, $2.35(76 / 100 \times 3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.04(76 / 100 \times 1 \mathrm{H}$, quint, $J 6.9$, $2-\mathrm{H}), 3.21(24 / 100 \times 1 \mathrm{H}, \mathrm{dt}, J 5.0$ and $6.9,2-\mathrm{H}), 5.04$ $(76 / 100 \times 1 \mathrm{H}, \mathrm{d}, J 6.9,1-\mathrm{H}), 5.13(24 / 100 \times 1 \mathrm{H}, \mathrm{d}, J 5.0,1-\mathrm{H})$ and $7.09-7.61(9 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; m / z 372\left(\mathrm{M}^{+}\right)$(Found: M^{+}, 372.1940).
(1S*,2S*)-1,2-Bis-(tert-butyldimethylsiloxy)-1-[(4-methylphenyl)sulfanyl $]$ propane syn-7g.-Compound syn-6g (50.0 mg , $0.160 \mathrm{mmol})$, the acetal $2(150 \mathrm{mg}, 0.799 \mathrm{mmol}), \mathrm{ZnI}_{2}(5.1 \mathrm{mg}$, 0.016 mmol) and $\mathrm{MeCN}\left(2 \mathrm{~cm}^{3}\right)$ gave compound 7 g (syn: anti $88: 12 ; 48.5 \mathrm{mg}, 71 \%$). Diastereoisomer $\mathrm{syn}-7 \mathrm{~g}$ was isolated in a pure state by column chromatography, oil; $v_{\max } / \mathrm{cm}^{-1} 2957$, 1493, 1471 and $1257 ; \delta_{\mathrm{H}}-0.11,-0.07,0.06$ and 0.07 (each 3 H , each $\mathrm{s}, 2 \times \mathrm{Me}_{2} \mathrm{Si}$), 0.86 and 0.90 (each 9 H , each $\mathrm{s}, 2 \times \mathrm{Bu}^{t}$), $1.26\left(3 \mathrm{H}, \mathrm{d}, J 6.2,3-\mathrm{H}_{3}\right), 2.32(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.94(1 \mathrm{H}, \mathrm{dq}, J 4.2$ and $6.2,2-\mathrm{H}), 5.14(1 \mathrm{H}, \mathrm{d}, J 4.2,1-\mathrm{H})$ and 7.08 and 7.40 (each 2 H, each d, $J 8, \mathrm{ArH}$) $m / z 426\left(\mathrm{M}^{+}\right)$(Found: $\mathrm{M}^{+}, 426.2437$. $\mathrm{C}_{22} \mathrm{H}_{42} \mathrm{O}_{2} \mathrm{SSi}_{2}$ requires $\mathrm{M}, 426.2442$).
(1S*,2R*)-1,2-Bis-(tert-butyldimethylsiloxy)-1-[(4-methylphenyl)sulfanyl]propane anti-7g.-Compound anti-6g (45.0 $\mathrm{mg}, 0.144 \mathrm{mmol})$, the acetal $2(135 \mathrm{mg}, 0.720 \mathrm{mmol}), \mathrm{ZnI}_{2}(4.6$ $\mathrm{mg}, 0.014 \mathrm{mmol})$ and $\mathrm{MeCN}\left(2 \mathrm{~cm}^{3}\right)$ gave compound 7 g (syn: anti 0:100; $43.2 \mathrm{mg}, 70 \%$). Diastereoisomer anti-7g was an oil; $v_{\text {max }} / \mathrm{cm}^{-1} 2930,1493,1471$ and 1257; $\delta_{\mathrm{H}}-0.03$ and -0.06 (each 3 H , each s, $\mathrm{Me}_{2} \mathrm{Si}$), $0.00\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{SiMe}_{2}\right), 0.87$ and 0.88 (each 9 H , each s, $2 \times \mathrm{Bu}^{1}$), $1.25\left(3 \mathrm{H}, \mathrm{d}, J 6.3,3-\mathrm{H}_{3}\right), 2.32(3 \mathrm{H}$, s, Me), $3.96(1 \mathrm{H}, \mathrm{dq}, J 3.3$ and $6.3,2-\mathrm{H}), 4.93(1 \mathrm{H}, \mathrm{d}, J 3.3,1-$ H) and 7.09 and 7.35 (each 2 H , each d, $J 8.0$, ArH); $m / z 426$ (M^{+}) (Found: $\mathrm{M}^{+}, 426.2444$).
(1S*,2S*)-1-(tert-Butyldimethylsiloxy)-2-phenyl-2-(trimethylsiloxy)ethyl 4-Methylphenyl Sulfide syn-7b.-To a stirred solution of ($S_{\mathrm{s}}^{*}, 1 S^{*}$)-2-[(4-methylphenyl)sulfinyl]-1-phenylethanol ($51.3 \mathrm{mg}, 0.197 \mathrm{mmol}$) and $\mathrm{ZnI}_{2}(6.2 \mathrm{mg}, 0.020 \mathrm{mmol})$ in dry MeCN ($4 \mathrm{~cm}^{3}$) was added dropwise 1,2-dimethoxy-1(trimethylsiloxy)ethylene ($104 \mathrm{mg}, 0.592 \mathrm{mmol}$) at room temperature for 1 h under nitrogen to give a crude solution of syn- β trimethylsiloxy sulfoxide syn- $\mathbf{6 b}$, then the acetal $2(185 \mathrm{mg}, 0.985$ mmol) was added at $0^{\circ} \mathrm{C}$ for 4 h under nitrogen, and the mixture was poured into saturated aq. sodium hydrogen carbonate and repeatedly extracted with methylene dichloride. The organic layer was washed with brine, dried, and evaporated. The residue was purified by PLC to give the α-siloxy sulfide 7b (syn: anti $87: 13 ; 54.7 \mathrm{mg}, 62 \%$) as a pale yellow oil. The diastereoisomers could not be separated in a pure state by column chromatography; $v_{\max } / \mathrm{cm}^{-1} 2920$ and $1495 ; \delta_{\mathrm{H}}$ (signals of $\operatorname{syn}-7 \mathbf{b}$) -0.04 and -0.01 (each $87 / 100 \times 3 \mathrm{H}$, each s, $\left.\mathrm{Me}_{2} \mathrm{Si}\right), 0.01\left(87 / 100 \times 9 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{3} \mathrm{Si}\right), 0.89(87 / 100 \times 9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{Bu}^{t}\right), 2.32(87 / 100 \times 3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 4.77$ and 5.01 (each $87 / 100 \times 1$ H, each d, $J 5.6,1-$ and $2-\mathrm{H})$ and $7.07-7.41(87 / 100 \times 9 \mathrm{H}, \mathrm{m}$, ArH); $m / z 446\left(\mathrm{M}^{+}\right)$(Found: M^{+}, 446.2129. $\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{O}_{2} \mathrm{SSi}_{2}$ requires $\mathrm{M}, 446.2129$).
(1S*,2R*)-1-(tert-Butyldimethylsiloxy)-2-phenyl-2-(trimethylsiloxy)ethyl 4-Methylphenyl Sulfide anti-7b.-To a stirred solution of ($S_{\mathrm{s}}{ }^{*}, 1 R^{*}$)-2-[(4-methylphenyl)sulfinyl]-1-phenylethanol $(38.8 \mathrm{mg}, 0.149 \mathrm{mmol})$ and $\mathrm{ZnI}_{2}(4.8 \mathrm{mg}, 0.015 \mathrm{mmol})$ in dry $\mathrm{MeCN}\left(3 \mathrm{~cm}^{3}\right)$ was added dropwise 1,2 -dimethoxy-1-(trimethylsiloxy) ethylene ($78.8 \mathrm{mg}, 0.448 \mathrm{mmol}$) at room temperature for 1 h under nitrogen to give a crude solution of anti- β trimethylsiloxy sulfoxide anti-6b, then the acetal $2(140 \mathrm{mg}$, 0.745 mmol) was added at $0^{\circ} \mathrm{C}$ for 4 h under nitrogen. The mixture was then poured into saturated aq. sodium hydrogen carbonate and repeatedly extracted with methylene dichloride. The organic layer was washed with brine, dried, and evaporated. The residue was purified by PLC to give the α siloxy sulfide 7 bb (syn:anti $3: 97 ; 44.0 \mathrm{mg}, 66 \%$) as a pale yellow oil. The diastereoisomers could not be separated in a pure state by column chromatography; $v_{\text {max }} / \mathrm{cm}^{-1} 2940$ and 1495; δ_{H} (signals of anti-7b) -0.33 and -0.08 (each 3 H , each s, $\left.\mathrm{Me}_{2} \mathrm{Si}\right),-0.06\left(97 / 100 \times 9 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{3} \mathrm{Si}\right), 0.72(97 / 100 \times 9 \mathrm{H}, \mathrm{s}$, Bu^{t}), $2.34(97 / 100 \times 3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 4.62$ and 4.99 (each $97 / 100 \times 1 \mathrm{H}$, each d, $J 6.8,1$ - and $2-\mathrm{H}$) and $7.08-7.42$ $(97 / 100 \times 9 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; m / z 446\left(\mathrm{M}^{+}\right)$(Found: M^{+}, 446.2139).

General Procedure for the Pummerer Reaction of $\mathrm{Ac}_{2} \mathrm{O}$ with Sulfoxides 6a.-A stirred solution of sulfoxide $\mathbf{6 a}(0.100 \mathrm{mmol})$ in $\mathrm{Ac}_{2} \mathrm{O}\left(3 \mathrm{~cm}^{3}\right)$ was refluxed for 2 days under nitrogen, and then the mixture was concentrated under reduced pressure. The crude oil was purified by PLC to give the α-acetoxy sulfide 8 .
(1R*,2R*)-2-(tert-Butyldimethylsiloxy)-1-[(4-methylphenyl)-sulfanyl]-2-phenylethyl Acetate syn-8.-Sulfoxide syn-6a (70.0 $\mathrm{mg}, 0.187 \mathrm{mmol}$) and $\mathrm{Ac}_{2} \mathrm{O}\left(3 \mathrm{~cm}^{3}\right)$ gave acetate $\mathbf{8}$ (syn: anti $4: 1$, $44.1 \mathrm{mg}, 57 \%$).
(1S*,2R*)-2-(tert-Butyldimethylsiloxy)-1-[(4-methylphenyl)-sulfanyl]-2-phenylethyl Acetate anti-8.-Compound anti-6a ($49.6 \mathrm{mg}, 0.133 \mathrm{mmol}$) and $\mathrm{Ac}_{2} \mathrm{O}\left(2 \mathrm{~cm}^{3}\right)$ gave compound 8 (syn: anti $4: 1 ; 18.2 \mathrm{mg}, 33 \%$) as an oil; $v_{\text {max }} / \mathrm{cm}^{-1} 2930,1743$ and 1493; $\delta_{\mathrm{H}}-0.17$ and 0.04 (each $3 / 4 \times 6 \mathrm{H}$, each $\mathrm{s}, \mathrm{Me}_{2} \mathrm{Si}$), -0.10 and 0.10 (each $1 / 4 \times 6 \mathrm{H}$, each s, $\mathrm{Me}_{2} \mathrm{Si}$), $0.84(3 / 4 \times 9$ $\left.\mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}\right), 0.93\left(1 / 4 \times 9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}\right), 1.97(1 / 4 \times 3 \mathrm{H}, \mathrm{s}, \mathrm{OAc})$, $1.98(3 / 4 \times 3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.28(1 / 4 \times 3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.30(3 / 4 \times 3$ $\mathrm{H}, \mathrm{s}, \mathrm{Me}), 4.82(3 / 4 \times 1 \mathrm{H}, \mathrm{d}, J 6.6,2-\mathrm{H}), 4.96(1 / 4 \times 1 \mathrm{H}, \mathrm{d}, J$ 4.3, 2-H), $6.13(1 / 4 \times 1 \mathrm{H}, \mathrm{d}, J 4.3,1-\mathrm{H}), 6.17(3 / 4 \times 1 \mathrm{H}, \mathrm{d}, J$ $4.3,1-\mathrm{H})$ and $6.995-7.449(9 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \mathrm{m} / \mathrm{z} 416\left(\mathrm{M}^{+}\right)$ (Found: $\mathrm{M}^{+}, 416.1842 . \mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{SSi}$ requires $\mathrm{M}, 416.1841$).

General Procedure for the Pummerer-type Reaction of OSilylated Ketene Acetal $\mathbf{2}$ with Sulfoxides $\mathbf{6 h}, \mathbf{6 i}$.-To a stirred solution of a sulfoxide $6(0.100 \mathrm{mmol})$ in dry $\mathrm{MeCN}\left(1 \mathrm{~cm}^{3}\right)$ was added dropwise ketene tert-butyldimethylsilyl methyl acetal 2 $(0.500-1.00 \mathrm{mmol})$ at $60-65^{\circ} \mathrm{C}$ as indicated in Table 2 for $4-12$ h under nitrogen, and then the solvent was evaporated off. The residue was purified by PLC to give the corresponding α-siloxy sulfide 7 in yields between 65 and 75%.

Ethyl(1S)-(tert-Butyldimethylsiloxy)-[(4-methylphenyl)sulfanyl]acetate (S)-7h.-Compound (S)-6h $\left\{[\alpha]_{\mathrm{D}}^{20}-189\right.$ (c 1.80, acetone), $193 \mathrm{mg}, 0.854 \mathrm{mmol}\}$, the acetal $2(1.605 \mathrm{~g}, 8.54$ $\mathrm{mmol})$ and $\mathrm{MeCN}\left(3 \mathrm{~cm}^{3}\right)$ gave compound (S) -7 h ($217 \mathrm{mg}, 75 \%$; 87% ee) as an oil; $[\alpha]_{\mathrm{D}}^{18}+35.8$ (c 0.46, acetone); $v_{\text {max }} / \mathrm{cm}^{-1} 2858$ and 1747; $\delta_{\mathrm{H}} 0.031$ and $0.062\left(3 \mathrm{H} \times 2\right.$, each s, $\left.\mathrm{Me}_{2} \mathrm{Si}\right), 0.88(\mathrm{~s}, 9$ $\mathrm{H}, \mathrm{Bu}^{t}$), 1.21 ($3 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{OCH}_{2} \mathrm{Me}$), $2.33(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 4.10$ and 4.11 (each 1 H , each q, $J 7.3, \mathrm{OC} H_{\mathrm{a}} H_{\mathrm{b}} \mathrm{Me}$), $5.40(\mathrm{~s}, 1 \mathrm{H}$, $1-\mathrm{H}$) and 7.08 and 7.43 (each 2 H , each d, $J 8.3, \mathrm{ArH}$); $m / z 340$ $\left(\mathrm{M}^{+}\right)$(Found: $\mathrm{M}^{+}, 340.1527$; C, $59.75 ; \mathrm{H}, 8.15 ; \mathrm{S}, 9.45 \%$. $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{SSi}$ requires $\mathrm{M}, 340.1527$; C, $59.95 ; \mathrm{H}, 8.30 ; \mathrm{S}$, 9.40%).

Ethyl(1R)-(tert-Butyldimethylsiloxy)-[(4-methylphenyl)sulfanyl]acetate (R)-7h.-Compound (R)-6h $\left\{[\alpha]_{\mathrm{D}}^{20}+195\right.$ (c 0.97 , acetone), $58.0 \mathrm{mg}, 0.257 \mathrm{mmol}\}$, the acetal $2(482 \mathrm{mg}, 2.57$ $\mathrm{mmol})$ and $\mathrm{MeCN}\left(1 \mathrm{~cm}^{3}\right)$ gave compound $(\mathrm{R})-7 \mathrm{~h}(63.1 \mathrm{mg}$, $72 \% ; 86 \%$ ee as an oil; $[\alpha]_{\mathrm{D}}^{18}-34.8$ (c 0.67 , acetone); $v_{\text {max }} / \mathrm{cm}^{-1}$ 2858 and $1747 ; \delta_{\mathrm{H}} 0.03$ and $0.06\left(3 \mathrm{H} \times 2\right.$, each s, $\mathrm{Me}_{2} \mathrm{Si}$), 0.88 (9 $\left.\mathrm{H}, \mathrm{s}, \mathrm{Bu}^{1}\right), 1.21\left(3 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{OCH}_{2} \mathrm{Me}\right), 2.33(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 4.10$ and 4.11 (each 1 H , each q, $\left.J 7.3, \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{Me}\right), 5.40(1 \mathrm{H}, \mathrm{s}, 1-$ H) and 7.08 and 7.43 (each 2 H , each d, $J 8.3$, ArH); $m / z 340$ $\left(\mathrm{M}^{+}\right)$(Found: $\mathrm{M}^{+}, 340.1546 ; \mathrm{C}, 59.65 ; \mathrm{H}, 8.20 ; \mathrm{S}, 9.20 \%$).
(1S)-1-(tert-Butyldimethylsiloxy)-N,N-dimethylamino-1-[(4methylphenyl)sulfanyl]acetamide (S)-7i.-Compound (S)-6i $\left\{[\alpha]_{\mathrm{D}}^{20}-187(c 1.24\right.$, acetone $\left.), 38.3 \mathrm{mg}, 0.170 \mathrm{mmol}\right\}$, the acetal $2(320 \mathrm{mg}, 1.70 \mathrm{mmol})$ and $\mathrm{MeCN}\left(1 \mathrm{~cm}^{3}\right)$ gave compound $(\mathrm{S})-7 \mathbf{i}$ ($37.3 \mathrm{mg}, 65 \% ; 88 \%$ ee) as an oil; $[\alpha]_{\mathrm{D}}^{18}-28.9$ (c 1.4, acetone); $v_{\text {max }} / \mathrm{cm}^{-1} 2932$ and $1641 ; \delta_{\mathrm{H}}-0.06\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{2} \mathrm{Si}\right), 0.84(9 \mathrm{H}, \mathrm{s}$, Bu^{l}), $2.34(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.94$ and $3.19\left(2 \times 3 \mathrm{H}\right.$, each s, $\left.\mathrm{Me}_{2} \mathrm{~N}\right)$, $5.57(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H})$ and 7.13 and 7.43 (each 2 H , each d, $J 8.2$, ArH); $m / z 282\left(\mathrm{M}^{+}-\mathrm{Bu}^{t}\right)$ [Found: ($\mathrm{M}^{+}-\mathrm{Bu}^{t}$), 282.0971; C, $60.05 ; \mathrm{H}, 8.4 ; \mathrm{N}, 4.15 ; \mathrm{S}, 9.55 \% . \mathrm{C}_{13} \mathrm{H}_{20} \mathrm{NO}_{2} \mathrm{SSi}$ requires m / z, 282.0981; $\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{NO}_{2} \mathrm{SSi}$ requires $\mathrm{C}, 60.10 ; \mathrm{H}, 8.60 ; \mathrm{N}, 4.15$; S, 9.45\%].
(1R)-1-(tert-Butyldimethylsiloxy)-N,N-dimethyl-1-[(4-methylphenyl)sulfanyl]acetamide (R)-7i.-Compound (R)- $\mathbf{6 i}$ $\left\{[\alpha]_{\mathrm{D}}^{20}+192(c 0.83\right.$, acetone $\left.), 233 \mathrm{mg}, 1.03 \mathrm{mmol}\right\}$, the acetal 2 $(1.88 \mathrm{~g}, 10.3 \mathrm{mmol})$ and $\mathrm{MeCN}\left(3 \mathrm{~cm}^{3}\right)$ gave compound (R)-7i ($244 \mathrm{mg}, 69 \% ; 88 \%$ ee) as an oil; $[\alpha]_{\mathrm{D}}^{18}+28.8$ (c 1.23, acetone); $\nu_{\text {max }} / \mathrm{cm}^{-1} 2932$ and 1642; $\delta_{\mathrm{H}}-0.06\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{2} \mathrm{Si}\right), 0.84(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{Bu}^{2}\right), 2.34(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.94$ and $3.19\left(2 \times 3 \mathrm{H}\right.$, each s, $\left.\mathrm{Me}_{2} \mathrm{~N}\right)$, $5.57(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H})$ and 7.13 and 7.43 (each 2 H , each d, $J 8.2$, ArH); $m / z 282\left(\mathrm{M}^{+}-\mathrm{Bu}^{t}\right)$ [Found: ($\mathrm{M}^{+}-\mathrm{Bu}^{t}$), 282.0979; C, 59.8; H, 8.5; N, 4.2; S, 9.35\%].
(R)-(Dimethylcarbamoyl)-[(4-methylphenyl)sulfanyl]methyl Acetate 9.-To a stirred solution of sulfide $(R)-7 \mathrm{i}(30.0 \mathrm{mg}$, $0.085 \mathrm{mmol})$ and $\mathrm{FeCl}_{3}(1.4 \mathrm{mg}, 0.0085 \mathrm{mmol})$ in dry $\mathrm{MeCN}(1$ cm^{3}) was added dropwise acetyl chloride ($35.0 \mathrm{mg}, 0.443 \mathrm{mmol}$) at room temperature for 1 h under nitrogen. The mixture was then poured into saturated aq. sodium hydrogen carbonate and repeatedly extracted with methylene dichloride. The organic layer was washed with brine, dried, and evaporated. The residue was purified by PLC to give the α-acetoxy sulfide $9(15.2 \mathrm{mg}$, 64%) as crystals; m.p. $60-62^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{18}-44.3(c 0.54$, acetone) $\left\{\right.$ lit., ${ }^{4 g}$ m.p. $59-60^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{18}-59.2(c 0.4$, acetone $\left.)\right\}$.

Determination of Absolute Stereochemistry of $\left(\mathbf{S}_{\mathbf{s}}\right)-4-M e t h y l-$ phenyl 2-Phenylpropyl Sulfoxide: Conversion into 2-Phenyl-propanal.-(S)-2-Phenylpropanal. To a stirred solution of $\left(S_{\mathrm{S}}\right)$ -4-methylphenyl (2S)-2-phenylpropyl sulfoxide syn-6f (188 mg, 0.729 mmol) and 2,6-lutidine (2,6-dimethylpyridine) (156 mg , 1.458 mmol) in dry $\mathrm{MeCN}\left(4 \mathrm{~cm}^{3}\right)$ was added dropwise trifluoroacetic anhydride (TFAA) $\left(0.202 \mathrm{~cm}^{3}, 1.458 \mathrm{mmol}\right)$ at $0^{\circ} \mathrm{C}$ under nitrogen. After 30 min , aq. $\mathrm{CuCl}_{2}(137 \mathrm{mg}, 1.02$ mmol in $10 \mathrm{~cm}^{3}$) was added, and the mixture was then stirred for 3 h at room temperature before being repeatedly extracted with ethyl acetate. The organic layer was washed with brine, dried and evaporated. The residue was purified by PLC to give (S)-2-phenylpropanal ($30.0 \mathrm{mg}, 31 \%$) as an oil; $[\alpha]_{\mathrm{D}}^{25}+6.14$ (c 0.26 , benzene) $\left\{\right.$ lit., ${ }^{11}[\alpha]_{\mathrm{D}}^{25}+209.1$ (c 1.49 , benzene) $\}$; $v_{\text {max }} / \mathrm{cm}^{1} 2370,1730$ and $1490 ; \delta_{\mathrm{H}} 1.47\left(3 \mathrm{H}, \mathrm{d}, J 7.2,3-\mathrm{H}_{3}\right), 3.64$ (1 H, q, J7.2, 2-H), 7.19-7.42 (5 H, m, ArH) and $9.69(1 \mathrm{H}, \mathrm{s}$, CHO); $m / z 134\left(\mathrm{M}^{+}\right)$(Found: $\mathrm{M}^{+}, 134.0741 . \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}$ requires M, 134.0731).
(R)-2-Phenylpropanal. To a stirred solution of $\left(S_{\mathrm{S}}\right)$-4methylphenyl ($2 R$)-2-phenylpropyl sulfoxide anti- $6 \mathrm{f}(148 \mathrm{mg}$, 0.574 mmol) and 2,6-lutidine ($83 \mathrm{mg}, 1.148 \mathrm{mmol}$) in dry MeCN $\left(4 \mathrm{~cm}^{3}\right)$ was added dropwise TFAA $\left(0.202 \mathrm{~cm}^{3}, 1.458 \mathrm{mmol}\right)$ at $0^{\circ} \mathrm{C}$ under nitrogen. After 30 min , aq. $\mathrm{HgCl}_{2}(234 \mathrm{mg}, 0.861$ mmol in water $10 \mathrm{~cm}^{3}$) was added, and the mixture was then stirred for 3 h at room temperature before being repeatedly extracted with ethyl acetate. The organic layer was washed with brine, dried and evaporated. The residue was purified by PLC to give (R)-2-phenylpropanal ($25.0 \mathrm{mg}, 33 \%$) as an oil; $[\alpha]_{\mathrm{D}}^{25}$ $-11.0\left(c 0.83\right.$, benzene) ; $v_{\max } / \mathrm{cm}^{-1} 2370,1730$ and $1490 ; \delta_{\mathrm{H}} 1.47$ $\left(3 \mathrm{H}, \mathrm{d}, J 7.2,3-\mathrm{H}_{3}\right), 3.64(1 \mathrm{H}, \mathrm{q}, J 7.2,2-\mathrm{H}), 7.19-7.42(5 \mathrm{H}$, $\mathrm{m}, \mathrm{ArH})$ and $9.69(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO})$.

Acknowledgements

This research was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture, Japan.

References

1 R. Pummerer, Ber. Dtsch. Chem. Ges., 1909, 42, 2282; 1910, 43, 1401; L. Horner and P. Kaiser, Justus Liebigs Ann. Chem., 1959, 626, 19; L. Horner, Justus Liebigs Ann. Chem., 1960, 631, 198.

2 Reviews, see: T. Durst, Adv. Org. Chem., 1969,6,285; T. Numata and S. Oae, Yuki Gosei Kagaku Kyokaishi, 1977, 35, 726 (Chem. Abstr., 1978, 88, 5639s); J. P. Marino, Topics in Sulfur Chemistry, ed.
A. Senning, George Thieme, Stuttgart, 1976, vol. 1, p. 1; T. Numata, Yuki Gosei Kagaku Kyokaishi, 1978, 36, 845 (Chem. Abstr., 1979, 90, 136847 x); S. Oae and T. Numata, The Pummerer Type of Reactions, in Isotopes in Organic Chemistry, ed. E. Buncel and C. C. Lee, Elsevier, New York, 1980, vol. 5, ch. 2; S. Oae, T. Numata and T. Yoshimura, Heterosulphonium Salts, in The Chemistry of the Sulphonium Group, ed. C. J. M. Stirling and S. Patai, Wiley, New York, 1981, Part 2, ch. 15.
3 K. Mislow, Introduction to Stereochemistry, W. A. Benjamin, New York, 1965.
4 (a) S. Glue, I. T. Kay and M. R. Kipps, Chem. Commun., 1970, 1158; (b) T. Numata and S. Oae, Tetrahedron Lett., 1977, 1337; (c) T. Numata, O. Itoh and S. Oae, Chem. Lett., 1977, 909; (d) M. Mikolajczyk, A. Zatorski, S. Grzejszczak, B. Costisella and W. Midura, J. Org. Chem., 1978, 43, 2518; (e) T. Numata, O. Itoh and S. Oae, Tetrahedron Lett., 1979, 1869; (f) T. Masuda, T. Numata, N. Furukawa and S. Oae, J. Chem. Soc., Perkin Trans. 2, 1978, 1302; (g) T. Numata, O. Itoh, T. Yoshimura and S. Oae, Bull. Chem. Soc. Jpn., 1983, 56, 257; (h) O. Itoh, T. Numata, T. Yoshimura and S. Oae, Bull Chem. Soc. Jpn., 1983, 56, 266; (i) M. Bhupathy and T. Cohen, Tetrahedron Lett., 1987, 28, 4793; (j) F. S. Gonzalez and P. G. Mendoza, Carbohydr. Res., 1988, 183, 227

5 B. Stridsberg and S. Allenmark, Acta Chem. Scand., Ser. B, 1974, 28, $591 ; 1796,30,219$; S. Wolfe, P. M. Kazmaier and H. Auski, Can. J. Chem., 1979, 57, 2404.
6 Y. Kita, H. Yasuda, O. Tamura, F. Itoh and Y. Tamura, Tetrahedron Lett., 1984, 25, 4681; Y. Kita, H. Yasuda, O. Tamura, F. Itoh and Y. Tamura, Chem. Pharm. Bull., 1985, 33, 4235; Y. Kita, O. Tamura, F. Itoh, H. Yasuda, T. Miki and Y. Tamura, Chem. Pharm. Bull., 1987, 35, 562.
7 Y. Kita, O. Tamura, T. Miki and Y. Tamura, Tetrahedron Lett., 1987, 28, 6479; Y. Kita, O. Tamura, T. Miki, H. Tono, N. Shibata and Y. Tamura, Tetrahedron Lett., 1989, 30, 729; Y. Kita, O. Tamura, N. Shibata and T. Miki, J. Chem. Soc., Perkin Trans. I, 1989, 1862; Chem. Pharm. Bull., 1990, 38, 1473; Y. Kita, N. Shibata, T. Miki, Y. Takemura and O. Tamura, J. Chem. Soc., Chem. Commun., 1990, 727; Y. Kita, N. Shibata, O. Tamura and T. Miki, Chem. Pharm. Bull., 1991, 39, 2225; Y. Kita, N. Shibata, T. Miki, Y. Takemura and O. Tamura, Chem. Pharm. Bull., 1992, 40, 12.

8 Y. Kita, N. Shibata and N. Yoshida, Tetrahedron Lett., 1993, 34, 4063.

9 (a) S. Lane, S. J. Quick and J. K. Taylor, Tetrahedron Lett., 1984, 25, 1039; (b) N. Tokitoh, Y. Igarashi and W. Ando, Tetrahedron Lett., 1987, 28, 5903.
10 For precedents, see: (a) I. Mori, P. A. Bartlett and C. H. Heathcock, J. Org. Chem., 1990, 55, 5966; (b) C. H. Heathcock, S. Kiyooka and T. A. Blumenkopf, J. Org. Chem., 1984, 49, 4219; (c) C. H. Heathcock and J. Lampe, J. Org. Chem., 1983, 48, 4330.
11 G. Consiglio, P. Pino, L. I. Flowers and C. U. Pittman, Jr., J. Chem. Soc., Chem. Commun., 1983, 612.
12 P. Bravo, M. Frigerio and G. Resnati, J. Org. Chem., 1990, 55, 4216. 13 B. Ganem and V. R. Small, Jr., J. Org. Chem., 1974, 39, 3728.
14 Y. Kita, N. Shibata, N. Yoshida, S. Fukui and C. Fujimori, Tetrahedron Lett., 1994, 35, 2569.
15 U. Schöllkopf, Angew. Chem., Int. Ed. Engl., 1970, 9, 763; K. Tomooka, T. Igarashi and T. Nakai, Tetrahedron Lett., 1993, 34, 8139; Tetrahedron, 1994, 50, 5927.
16 G. Tsuchihashi, S. Iriuchijima and K. Maniwa, Tetrahedron Lett., 1973, 3389.
17 H. Kosugi, H. Konta and H. Uda, J. Chem. Soc., Chem. Commun., 1985, 211 ; H. Kosugi, Y. Watanabe and H. Uda, Chem. Lett., 1989, 1865.

Paper 4/02641A
Received 4th May 1994
Accepted 5th July 1994

[^0]: \dagger Although an unusually high asymmetric induction (70% ee) in the Pummerer reaction was achieved by the presence of dicyclohexylcarbodiimide as an effective scavenger of the generated acetic acid, ${ }^{4 e}$ the chemical yield was quite low (10%).
 \ddagger Other silicon-induced Pummerer-type reactions were reported using silylating reagents such as iodotrimethylsilane, ${ }^{9 a}$ chlorotrimethylsilane, ${ }^{9 a}$ and trialkyl triflate. ${ }^{9 b}$

[^1]: * A similar mechanism involving homolysis of the α-anion intermediate, followed by recombination of the radical and radical anion fragments, is proposed in the Wittig rearrangement.
 \dagger This mechanism was suggested by a reviewer.

